Bibliography#

and22

Histogram and. Empirical histogram and pmf. Oct 2022. URL: https://stats.stackexchange.com/questions/590792/empirical-histogram-and-pmf.

BIS16

CHRISTOPHER M. BISHOP. Pattern recognition and machine learning. SPRINGER-VERLAG NEW YORK, 2016.

Cha21

Stanley H. Chan. Introduction to probability for Data Science. Michigan Publishing, 2021.

III17

Hal Daume III. A course in machine learning. 2017.

Jun23

Alexander Jung. Machine learning: The basics. Springer Nature Singapore, 2023.

JM22

Dan Jurafsky and James H. Martin. Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition. Pearson, 2022.

Mur19

Kevin P. Murphy. Probabilistic Machine Learning: An Introduction. Cambridge University Press, 2019.

Orl

Bloom Orloff. Reading 5b: continuous random variables. https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-spring-2014/1f88c7c765d2532fd57d8ee719a751b3_MIT18_05S14_Reading5b.pdf. (Accessed on 10/28/2022).

PN14

Hossein Pishro-Nik. Introduction to probability, statistics, and Random Processes. Kappa Research LLC, 2014. URL: https://www.probabilitycourse.com/.

She21

John M. Shea. Foundations of data science with python. 2021. URL: https://jmshea.github.io/Foundations-of-Data-Science-with-Python/intro.html.

Ste

Sootla Sten. URL: https://sootlasten.github.io/2017/gradient-steepest-ascent/.

Wik22

Wiki. Poisson distribution. Oct 2022. URL: https://en.wikipedia.org/wiki/Poisson_distribution.

Yiu19

Tony Yiu. Fun with the binomial distribution - towards data science. Jul 2019. URL: https://towardsdatascience.com/fun-with-the-binomial-distribution-96a5ecabf65b.